AF-equivalence relations and their cocycles

نویسنده

  • Jean Renault
چکیده

After a review of some the main results about hyperfinite equivalence relations and their cocycles in the measured setting, we give a definition of a topological AF equivalence relation. We show that every cocycle is cohomologous to a quasi-product cocycle. We then study the problem of determining the quasi-invariant probability measures admitting a given cocycle as their Radon-Nikodym derivative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Cocycles , Random Tilings and the Super - Kand Strong Markov

We consider 1-cocycles with values in locally compact, second countable abelian groups on discrete, nonsingular, ergodic equivalence relations. If such a cocycle is invariant under certain automorphisms of these relations we show that the skew product extension deened by the cocycle is ergodic. As an application we obtain an extension of many of the results in 9] to higher-dimensional shifts of...

متن کامل

Invariant Cocycles, Random Tilings and the Super-K and Strong Markov Properties

We consider 1-cocycles with values in locally compact, second countable abelian groups on discrete, nonsingular, ergodic equivalence relations. If such a cocycle is invariant under certain automorphisms of these relations we show that the skew product extension defined by the cocycle is ergodic. As an application we obtain an extension of many of the results in [9] to higher-dimensional shifts ...

متن کامل

An absorption theorem for minimal AF equivalence relations on Cantor sets

We prove that a ‘small’ extension of a minimal AF equivalence relation on a Cantor set is orbit equivalent to the AF relation. By a ‘small’ extension we mean an equivalence relation generated by the minimal AF equivalence relation and another AF equivalence relation which is defined on a closed thin subset. The result we obtain is a generalization of the main theorem in [GMPS2].

متن کامل

Outer automorphism groups of some ergodic equivalence relations

Let R a be countable ergodic equivalence relation of type II1 on a standard probability space (X,μ). The group Out R of outer automorphisms of R consists of all invertible Borel measure preserving maps of the space which map R-classes to R-classes modulo those which preserve almost every R-class. We analyze the group Out R for relations R generated by actions of higher rank lattices, providing ...

متن کامل

Ergodicity of Cocycles. 1: General Theory

We prove severaìautomatic' ergodicity results for cocycles on a discrete nonsingular ergodic equivalence relation on a probability space (X; S;) with values in virtually nilpotent groups. The hypotheses required for automatic ergodicity are invari-ance or quasi-invariance of the cocycles under asymptotically central automorphisms of the equivalence relation. If the cocycles have certain recurre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001